

Introduction:	Aramide belongs to the latest group of chemical fibres. Its special capa-
	bilities are a high strength, a high modulus, a low density as well as a
	good acceptance to work. That's why Aramide is excellent to use in dif-
	ferent fields of industry, as already used in fibre compound materials of
	highly demanded parts for aviation and astronautics, for vehicle-, elec-
	tric- and sports article-industry, as well as for ballistic protection.

General Properties: • low weight

- very high modulus
- excellent tenacity after repeated stress
- good resistance to signs of fatigue
- good properties to absorb vibrations
- resistent to draft-expansion
- slight thermal shrinkage as well as low conductivity
- the most important properties at room temperature will not be changed, even material will be exposed to temperatures of -70° C to $+180^{\circ}$ C
- flame-resistant, self-extinguishing, not melting
- slight evolution of smoke
- excellent resistant to most of chemicals like fuel, lubricants, washing powders and salt-water
- korrosive resistent
- excellent electrical properties; very low conductivity and slight dielectric constant
- suitable for conventional tissue textile manufacture

Physical Proper-	Elongation at break [%]	2,70 - 2,90
<u>ties:</u>	Breaking tenacity [Mpa]	2951 - 3154
	Breaking strength [N]	285 - 1740
	Modulus [GPa]	99 - 108
	Flammability (LOI) [%]	29
	Hot air shrinkage (15 minutes at	0,1
	190°C) [%]	
	Heat resistance (residual strength	90
	after 48 hours at 200°C) [%]	
	Decomposition temperature [°C]	> 450*
	Coefficient of thermal expansion	-3,5
	(linear) $[10^{-6}/K]$	
	Density [g/cm ³]	1.44

*based on thermogravimetric analysis at 40 K/Min.

[These explanatory notes are based on information provided by our suppliers and therefore are no legally binding statements.]

